Files
wiki/src/data/technical/transformer-architecture-deep-dive.md
2026-02-02 07:05:30 +01:00

193 lines
5.9 KiB
Markdown

---
title: "Understanding Transformer Architecture: A Deep Dive"
description: "An in-depth technical exploration of transformer models, the architecture behind modern NLP breakthroughs."
author: "HEC IA Technical Team"
pubDatetime: 2026-01-28T10:00:00Z
tags: ["transformers", "nlp", "deep-learning", "architecture"]
difficulty: "advanced"
readingTime: "25 min"
featured: true
---
## Introduction
Transformers have revolutionized natural language processing since their introduction in the landmark paper "Attention is All You Need" (Vaswani et al., 2017). This deep dive explores the architecture, mechanisms, and implementations that make transformers so powerful.
## The Attention Mechanism
At the heart of transformers lies the self-attention mechanism, which allows the model to weigh the importance of different words in a sequence.
### Self-Attention Formula
The self-attention mechanism computes:
```
Attention(Q, K, V) = softmax(QK^T / √d_k)V
```
Where:
- Q (Query): What we're looking for
- K (Key): What we're matching against
- V (Value): The actual content we want to retrieve
- d_k: Dimension of the key vectors (for scaling)
## Multi-Head Attention
Instead of performing a single attention function, multi-head attention runs multiple attention operations in parallel:
```python
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.qkv_proj = nn.Linear(d_model, 3 * d_model)
self.out_proj = nn.Linear(d_model, d_model)
def forward(self, x):
batch_size, seq_len, _ = x.shape
# Project and split into Q, K, V
qkv = self.qkv_proj(x)
qkv = qkv.reshape(batch_size, seq_len, 3, self.num_heads, self.head_dim)
q, k, v = qkv.unbind(2)
# Compute attention
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
attn = F.softmax(scores, dim=-1)
# Apply attention to values
out = torch.matmul(attn, v)
out = out.transpose(1, 2).reshape(batch_size, seq_len, self.d_model)
return self.out_proj(out)
```
## Positional Encoding
Since transformers don't have inherent sequence order, we add positional encodings:
```python
def positional_encoding(seq_len, d_model):
position = torch.arange(seq_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
pe = torch.zeros(seq_len, d_model)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
return pe
```
## Feed-Forward Networks
Each transformer layer includes a position-wise feed-forward network:
```python
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super().__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.linear2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.linear2(self.dropout(F.relu(self.linear1(x))))
```
## Complete Transformer Block
Putting it all together:
```python
class TransformerBlock(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super().__init__()
self.attention = MultiHeadAttention(d_model, num_heads)
self.feed_forward = FeedForward(d_model, d_ff, dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x):
# Self-attention with residual connection
attn_out = self.attention(x)
x = self.norm1(x + self.dropout1(attn_out))
# Feed-forward with residual connection
ff_out = self.feed_forward(x)
x = self.norm2(x + self.dropout2(ff_out))
return x
```
## Training Considerations
### Learning Rate Scheduling
Transformers typically use warm-up scheduling:
```python
def lr_schedule(step, d_model, warmup_steps=4000):
arg1 = step ** -0.5
arg2 = step * (warmup_steps ** -1.5)
return d_model ** -0.5 * min(arg1, arg2)
```
### Label Smoothing
To prevent overconfidence:
```python
class LabelSmoothingLoss(nn.Module):
def __init__(self, smoothing=0.1):
super().__init__()
self.smoothing = smoothing
def forward(self, pred, target):
n_class = pred.size(1)
one_hot = torch.zeros_like(pred).scatter(1, target.unsqueeze(1), 1)
one_hot = one_hot * (1 - self.smoothing) + self.smoothing / n_class
log_prob = F.log_softmax(pred, dim=1)
return -(one_hot * log_prob).sum(dim=1).mean()
```
## Practical Applications
Transformers excel at:
1. **Machine Translation**: Translating between languages
2. **Text Summarization**: Generating concise summaries
3. **Question Answering**: Understanding context to answer queries
4. **Text Generation**: Creating coherent text (GPT models)
5. **Sentiment Analysis**: Understanding emotional tone
## Optimization Tips
1. **Gradient Checkpointing**: Save memory during training
2. **Mixed Precision Training**: Use FP16 for faster computation
3. **Efficient Attention**: Implement sparse or local attention for long sequences
4. **Model Parallelism**: Distribute layers across GPUs
## Conclusion
Transformers represent a paradigm shift in sequence modeling. Understanding their architecture is crucial for anyone working in modern NLP and beyond.
## References
- Vaswani et al. (2017) - "Attention is All You Need"
- Devlin et al. (2018) - "BERT: Pre-training of Deep Bidirectional Transformers"
- Brown et al. (2020) - "Language Models are Few-Shot Learners" (GPT-3)
## Further Reading
- [The Illustrated Transformer](http://jalammar.github.io/illustrated-transformer/)
- [Annotated Transformer](http://nlp.seas.harvard.edu/2018/04/03/attention.html)
- [Transformers from Scratch](https://peterbloem.nl/blog/transformers)